

 Navigation

 	
 index

 	
 next |

 	Laratrust Docs 3.0.10 documentation

Laratrust Docs

[image: _images/laratrust.png]

Table of Contents:

Note

Please read all the sections in order

	Installation

	Configuration
	After Installation
	Configuration Files

	Automatic setup (Recommended)

	Migrations

	Models
	Role

	Permission

	User

	Seeder
	Permissions

	Usage
	Concepts
	Set things up

	Permissions Assignment & Removal
	Assignment

	Removal

	Roles Assignment & Removal
	Assignment

	Removal

	Checking for Roles & Permissions

	User ability

	Model’s Ownership

	Soft Deleting

	Blade Templates

	Middleware
	Concepts

	Middleware Return
	Abort

	Redirect

	Short Syntax Route Filter

	Troubleshooting

	License

	Contributing

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

Installation

	In order to install Laratrust in your Laravel project, just run the composer require command from your terminal:

composer require "santigarcor/laratrust:3.0.*"

	Then in your config/app.php add the following to the providers array:

Laratrust\LaratrustServiceProvider::class,

	In the same `config/app.php and add the following to the aliases array:

'Laratrust' => Laratrust\LaratrustFacade::class,

	If you are going to use Middleware (requires Laravel 5.1 or later) you also need to add the following to routeMiddleware array in app/Http/Kernel.php:

'role' => \Laratrust\Middleware\LaratrustRole::class,
'permission' => \Laratrust\Middleware\LaratrustPermission::class,
'ability' => \Laratrust\Middleware\LaratrustAbility::class,

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

Configuration

	After Installation
	Configuration Files

	Automatic setup (Recommended)

	Migrations

	Models
	Role

	Permission

	User

	Seeder
	Permissions

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Configuration

After Installation

Configuration Files

Set the proper values in the config/auth.php. These values will be used by laratrust to refer to the user model.

You can also publish the configuration for this package to further customize table names and model namespaces.

Use php artisan vendor:publish, the laratrust.php and laratrust_seeder.php files will be created in your app/config directory.

Automatic setup (Recommended)

If you want to let laratrust to setup by itselft, just run the following command:

php artisan laratrust:setup

This command will generate the migrations, create the Role and Permission models and will add the trait to the User model.

Note

The user trait will be added to the Model configured in the auth.php file.

And then do not forget to run:

composer dump-autoload

Important

If you did the steps above you are done with the configuration, if not, please read and follow the whole configuration process

Migrations

Now generate the Laratrust migration:

php artisan laratrust:migration

It will generate the <timestamp>_laratrust_setup_tables.php migration.
You may now run it with the artisan migrate command:

php artisan migrate

After the migration, four new tables will be present:

	roles — stores role records

	permissions — stores permission records

	role_user — stores many-to-many [https://laravel.com/docs/eloquent-relationships#many-to-many] relations between roles and users

	permission_role — stores many-to-many [https://laravel.com/docs/eloquent-relationships#many-to-many] relations between roles and permissions

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Configuration

Models

	Role

	Permission

	User

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Configuration

 	Models

Role

Create a Role model inside app/Role.php using the following example:

<?php namespace App;

use Laratrust\LaratrustRole;

class Role extends LaratrustRole
{
}

The Role model has three main attributes:

	name — Unique name for the Role, used for looking up role information in the application layer. For example: “admin”, “owner”, “employee”.

	display_name — Human readable name for the Role. Not necessarily unique and optional. For example: “User Administrator”, “Project Owner”, “Widget Co. Employee”.

	description — A more detailed explanation of what the Role does. Also optional.

Both display_name and description are optional; their fields are nullable in the database.

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Configuration

 	Models

Permission

Create a Permission model inside app/Permission.php using the following example:

namespace App;

use Laratrust\LaratrustPermission;

class Permission extends LaratrustPermission
{
}

The Permission model has the same three attributes as the Role:

	name — Unique name for the permission, used for looking up permission information in the application layer. For example: “create-post”, “edit-user”, “post-payment”, “mailing-list-subscribe”.

	display_name — Human readable name for the permission. Not necessarily unique and optional. For example “Create Posts”, “Edit Users”, “Post Payments”, “Subscribe to mailing list”.

	description — A more detailed explanation of the Permission.

In general, it may be helpful to think of the last two attributes in the form of a sentence: “The permission display_name allows a user to description.”

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Configuration

 	Models

User

Next, use the LaratrustUserTrait trait in your existing User model. For example:

<?php

use Laratrust\Traits\LaratrustUserTrait;

class User extends Model
{
 use LaratrustUserTrait; // add this trait to your user model

 ...
}

This will enable the relation with Role and add the following methods roles(), hasRole($name), can($permission), and ability($roles, $permissions, $options) within your User model.

Do not forget to dump composer autoload:

composer dump-autoload

Important

At this point you are ready to go

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Configuration

Seeder

Laratrust comes with a database seeder, this seeder helps you filling the permissions for each role depending on the module, and creates one user for each role.

To generate the seeder you have to run:

php artisan laratrust:seeder

and:

composer dump-autoload

And in the database/seeds/DatabaseSeeder.php file you have to add to the run method:

$this->call(LaratrustSeeder::class);

Note

If you have not run php artisan vendor:publish you should run it in order to customize the roles, modules and permissions in each case.

After you run php artisan vendor:publish, you will have a config/laratrust_seeder.php file and it looks like this:

return [
 'role_structure' => [
 'superadministrator' => [
 'users' => 'c,r,u,d',
 'acl' => 'c,r,u,d',
 'profile' => 'r,u'
],
 'administrator' => [
 'users' => 'c,r,u,d',
 'profile' => 'r,u'
],
 'user' => [
 'profile' => 'r,u'
],
],
 ...
];

To understand the file you must know:

	The first level is the roles.

	The second level is the modules.

	The second level assignments are the permissions.

With that in mind, you should arrange your roles, modules and permissions like this:

return [
 'role' => [
 'module' => 'permissions',
],
];

Permissions

In case that you do not want to use the c,r,u,d permissions, in the config/laratrust_seeder.php there the permissions_map where you can change the permissions mapping.

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

Usage

	Concepts
	Set things up

	Permissions Assignment & Removal
	Assignment

	Removal

	Roles Assignment & Removal
	Assignment

	Removal

	Checking for Roles & Permissions

	User ability

	Model’s Ownership

	Soft Deleting

	Blade Templates

	Middleware
	Concepts

	Middleware Return
	Abort

	Redirect

	Short Syntax Route Filter

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Usage

Concepts

Set things up

Let’s start by creating the following Roles:

$owner = new Role();
$owner->name = 'owner';
$owner->display_name = 'Project Owner'; // optional
$owner->description = 'User is the owner of a given project'; // optional
$owner->save();

$admin = new Role();
$admin->name = 'admin';
$admin->display_name = 'User Administrator'; // optional
$admin->description = 'User is allowed to manage and edit other users'; // optional
$admin->save();

Now we just need to add Permissions to those Roles:

$createPost = new Permission();
$createPost->name = 'create-post';
$createPost->display_name = 'Create Posts'; // optional
// Allow a user to...
$createPost->description = 'create new blog posts'; // optional
$createPost->save();

$editUser = new Permission();
$editUser->name = 'edit-user';
$editUser->display_name = 'Edit Users'; // optional
// Allow a user to...
$editUser->description = 'edit existing users'; // optional
$editUser->save();

Permissions Assignment & Removal

By using the LaratrustRoleTrait we can do the following:

Assignment

$admin->attachPermission($createPost);
// equivalent to $admin->permissions()->attach([$createPost->id]);

$owner->attachPermissions([$createPost, $editUser]);
// equivalent to $owner->permissions()->attach([$createPost->id, $editUser->id]);

$owner->savePermissions([$createPost, $editUser]);
// equivalent to $owner->permissions()->sync([$createPost->id, $editUser->id]);

Removal

$admin->detachPermission($createPost);
// equivalent to $admin->permissions()->detach([$createPost->id]);

$owner->detachPermissions([$createPost, $editUser]);
// equivalent to $owner->permissions()->detach([$createPost->id, $editUser->id]);

Roles Assignment & Removal

With both roles created let’s assign them to the users.
Thanks to the LaratrustUserTrait this is as easy as:

Assignment

$user->attachRole($admin); // parameter can be an Role object, array, or id
// equivalent to $user->roles()->attach([$admin->id]);

$user->attachRoles([$admin, $owner]); // parameter can be an Role object, array, or id
// equivalent to $user->roles()->attach([$admin->id, $owner->id]);

$user->syncRoles([$admin->id, $owner->id]);
// equivalent to $user->roles()->sync([$admin->id]);

Removal

$user->detachRole($admin); // parameter can be an Role object, array, or id
// equivalent to $user->roles()->detach([$admin->id]);

$user->detachRoles([$admin, $owner]); // parameter can be an Role object, array, or id
// equivalent to $user->roles()->detach([$admin->id, $owner->id]);

Checking for Roles & Permissions

Now we can check for roles and permissions simply by doing:

$user->hasRole('owner'); // false
$user->hasRole('admin'); // true
$user->can('edit-user'); // false
$user->can('create-post'); // true

Both hasRole() and can() can receive an array of roles & permissions to check:

$user->hasRole(['owner', 'admin']); // true
$user->can(['edit-user', 'create-post']); // true

By default, if any of the roles or permissions are present for a user then the method will return true.
Passing true as a second parameter instructs the method to require all of the items:

$user->hasRole(['owner', 'admin']); // true
$user->hasRole(['owner', 'admin'], true); // false, user does not have admin role
$user->can(['edit-user', 'create-post']); // true
$user->can(['edit-user', 'create-post'], true); // false, user does not have edit-user permission

You can have as many Roles as you want for each User and vice versa.

The Laratrust class has shortcuts to both can() and hasRole() for the currently logged in user:

Laratrust::hasRole('role-name');
Laratrust::can('permission-name');

// is identical to

Auth::user()->hasRole('role-name');
Auth::user()->can('permission-name');

You can also use placeholders (wildcards) to check any matching permission by doing:

// match any admin permission
$user->can('admin.*'); // true

// match any permission about users
$user->can('*_users'); // true

User ability

More advanced checking can be done using the awesome ability function.
It takes in three parameters (roles, permissions, options):

	roles is a set of roles to check.

	permissions is a set of permissions to check.

	options is a set of options to change the method behavior.

Either of the roles or permissions variable can be a comma separated string or array:

$user->ability(['admin', 'owner'], ['create-post', 'edit-user']);

// or

$user->ability('admin,owner', 'create-post,edit-user');

This will check whether the user has any of the provided roles and permissions.
In this case it will return true since the user is an admin and has the create-post permission.

The third parameter is an options array:

$options = [
 'validate_all' => true | false (Default: false),
 'return_type' => boolean | array | both (Default: boolean)
];

	validate_all is a boolean flag to set whether to check all the values for true, or to return true if at least one role or permission is matched.

	return_type specifies whether to return a boolean, array of checked values, or both in an array.

Here is an example output:

$options = [
 'validate_all' => true,
 'return_type' => 'both'
];

list($validate, $allValidations) = $user->ability(
 ['admin', 'owner'],
 ['create-post', 'edit-user'],
 $options
);

var_dump($validate);
// bool(false)

var_dump($allValidations);
// array(4) {
// ['role'] => bool(true)
// ['role_2'] => bool(false)
// ['create-post'] => bool(true)
// ['edit-user'] => bool(false)
// }

The Laratrust class has a shortcut to ability() for the currently logged in user:

Laratrust::ability('admin,owner', 'create-post,edit-user');

// is identical to

Auth::user()->ability('admin,owner', 'create-post,edit-user');

Model’s Ownership

If you need to check if the user owns a model you can use the user function owns:

public function update (Post $post) {
 if ($user->owns($post)) { //This will check the 'user_id' inside the $post
 abort(403);
 }

 ...
}

If you want to change the foreign key name to check for, you can pass a second attribute to the method:

public function update (Post $post) {
 if ($user->owns($post, 'idUser')) { //This will check for 'idUser' inside the $post
 abort(403);
 }

 ...
}

...

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Usage

Soft Deleting

The default migration takes advantage of onDelete('cascade') clauses within the pivot tables to remove relations when a parent record is deleted. If for some reason you can not use cascading deletes in your database, the LaratrustRole and LaratrustPermission classes, and the HasRole trait include event listeners to manually delete records in relevant pivot tables. In the interest of not accidentally deleting data, the event listeners will not delete pivot data if the model uses soft deleting. However, due to limitations in Laravel’s event listeners, there is no way to distinguish between a call to delete() versus a call to forceDelete(). For this reason, before you force delete a model, you must manually delete any of the relationship data (unless your pivot tables uses cascading deletes). For example:

$role = Role::findOrFail(1); // Pull back a given role

// Regular Delete
$role->delete(); // This will work no matter what

// Force Delete
$role->users()->sync([]); // Delete relationship data
$role->permissions()->sync([]); // Delete relationship data

$role->forceDelete(); // Now force delete will work regardless of whether the pivot table has cascading delete

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Usage

Blade Templates

Three directives are available for use within your Blade templates. What you give as the directive arguments will be directly passed to the corresponding Laratrust function. :

@role('admin')
 <p>This is visible to users with the admin role. Gets translated to
 \Laratrust::hasRole('admin')</p>
@endrole

@permission('manage-admins')
 <p>This is visible to users with the given permissions. Gets translated to
 \Laratrust::can('manage-admins'). The @can directive is already taken by core
 laravel authorization package, hence the @permission directive instead.</p>
@endpermission

@ability('admin,owner', 'create-post,edit-user')
 <p>This is visible to users with the given abilities. Gets translated to
 \Laratrust::ability('admin,owner', 'create-post,edit-user')</p>
@endability

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Usage

Middleware

Concepts

You can use a middleware to filter routes and route groups by permission or role:

Route::group(['prefix' => 'admin', 'middleware' => ['role:admin']], function() {
 Route::get('/', 'AdminController@welcome');
 Route::get('/manage', ['middleware' => ['permission:manage-admins'], 'uses' => 'AdminController@manageAdmins']);
});

It is possible to use pipe symbol as OR operator:

'middleware' => ['role:admin|root']

To emulate AND functionality just use multiple instances of middleware:

'middleware' => ['role:owner', 'role:writer']

For more complex situations use ability middleware which accepts 3 parameters: roles, permissions, validate_all:

'middleware' => ['ability:admin|owner,create-post|edit-user,true']

Middleware Return

The middleware supports two kinds of returns in case the check fails. You can configure the return type and the value in the config/laratrust.php file.

Abort

By default the middleware aborts with a code 403 but you can customize it by changing the middleware_params value.

Redirect

To make a redirection in case the middleware check fails, you will need to change the middleware_handling value to redirect and the middleware_params to the route you need to be redirected. Leaving the configuration like this:

'middleware_handling' => 'redirect',
'middleware_params' => '/home', // Change this to the route you need

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

 	Usage

Short Syntax Route Filter

Note

It only works with laravel <5.1

To filter a route by permission or role you can call the following in your app/Http/routes.php

// only users with roles that have the 'manage_posts' permission will be able to access any route within admin/post
Laratrust::routeNeedsPermission('admin/post*', 'create-post');

// only owners will have access to routes within admin/advanced
Laratrust::routeNeedsRole('admin/advanced*', 'owner');

// optionally the second parameter can be an array of permissions or roles
// user would need to match all roles or permissions for that route
Laratrust::routeNeedsPermission('admin/post*', array('create-post', 'edit-comment'));
Laratrust::routeNeedsRole('admin/advanced*', array('owner','writer'));

Both of these methods accept a third parameter.
If the third parameter is null then the return of a prohibited access will be App::abort(403), otherwise the third parameter will be returned.

So you can use it like:

Laratrust::routeNeedsRole('admin/advanced*', 'owner', Redirect::to('/home'));

Furthermore both of these methods accept a fourth parameter.
It defaults to true and checks all roles/permissions given.
If you set it to false, the function will only fail if all roles/permissions fail for that user.
Useful for admin applications where you want to allow access for multiple groups :

// if a user has 'create-post', 'edit-comment', or both they will have access
Laratrust::routeNeedsPermission('admin/post*', array('create-post', 'edit-comment'), null, false);

// if a user is a member of 'owner', 'writer', or both they will have access
Laratrust::routeNeedsRole('admin/advanced*', array('owner','writer'), null, false);

// if a user is a member of 'owner', 'writer', or both, or user has 'create-post', 'edit-comment' they will have access
// if the 4th parameter is true then the user must be a member of Role and must have Permission
Laratrust::routeNeedsRoleOrPermission(
 'admin/advanced*',
 array('owner', 'writer'),
 array('create-post', 'edit-comment'),
 null,
 false
);

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

Troubleshooting

If you encounter an error when doing the migration that looks like:

SQLSTATE[HY000]: General error: 1005 Can't create table 'laravelbootstrapstarter.#sql-42c_f8' (errno: 150)
 (SQL: alter table `role_user` add constraint role_user_user_id_foreign foreign key (`user_id`)
 references `users` (`id`)) (Bindings: array ())

Then it is likely that the id column in your user table does not match the user_id column in role_user.
Make sure both are INT(10).

—

When trying to use the LaratrustUserTrait methods, you encounter the error which looks like:

Class name must be a valid object or a string

Then probably you do not have published Laratrust assets or something went wrong when you did it.
First of all check that you have the laratrust.php file in your app/config directory.
If you don’t, then try php artisan vendor:publish and, if it does not appear, manually copy the /vendor/santigarcor/laratrust/src/config/config.php file in your config directory and rename it laratrust.php.

—

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

License

Laratrust is free software distributed under the terms of the MIT license.

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Laratrust Docs 3.0.10 documentation

Contributing

Support follows PSR-1 and PSR-4 PHP coding standards, and semantic versioning. Additionally the source code follows the PSR-2 code style and the builds check it.

Please report any issue you find in the issues page.
Pull requests are welcome.

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Laratrust Docs 3.0.10 documentation

Index

 Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

 _images/laratrust.png
Laratrust

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Laratrust Docs 3.0.10 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Santiago Garcia.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

